Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions
نویسندگان
چکیده
The oxidative phosphorylation (OxPhos) pathway is responsible for most aerobic ATP production and is the only pathway with both nuclear and mitochondrial encoded proteins. The importance of the interactions between these two genomes has recently received more attention because of their potential evolutionary effects and how they may affect human health and disease. In many different organisms, healthy nuclear and mitochondrial genome hybrids between species or among distant populations within a species affect fitness and OxPhos functions. However, what is less understood is whether these interactions impact individuals within a single natural population. The significance of this impact depends on the strength of selection for mito-nuclear interactions. We examined whether mito-nuclear interactions alter allele frequencies for ~11,000 nuclear SNPs within a single, natural Fundulus heteroclitus population containing two divergent mitochondrial haplotypes (mt-haplotypes). Between the two mt-haplotypes, there are significant nuclear allele frequency differences for 349 SNPs with a p-value of 1% (236 with 10% FDR). Unlike the rest of the genome, these 349 outlier SNPs form two groups associated with each mt-haplotype, with a minority of individuals having mixed ancestry. We use this mixed ancestry in combination with mt-haplotype as a polygenic factor to explain a significant fraction of the individual OxPhos variation. These data suggest that mito-nuclear interactions affect cardiac OxPhos function. The 349 outlier SNPs occur in genes involved in regulating metabolic processes but are not directly associated with the 79 nuclear OxPhos proteins. Therefore, we postulate that the evolution of mito-nuclear interactions affects OxPhos function by acting upstream of OxPhos.
منابع مشابه
Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae.
Mitochondria are essential multifunctional organelles whose metabolic functions, biogenesis, and maintenance are controlled through genetic interactions between mitochondrial and nuclear genomes. In natural populations, mitochondrial efficiencies may be impacted by epistatic interactions between naturally segregating genome variants. The extent that mitochondrial-nuclear epistasis contributes t...
متن کاملMitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila
The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the...
متن کاملStrain-specific nuclear genetic background differentially affects mitochondria-related phenotypes in Saccharomyces cerevisiae
In the course of our studies on mitochondrial defects, we have observed important phenotypic variations in Saccharomyces cerevisiae strains suggesting that a better characterization of the genetic variability will be essential to define the relationship between the mitochondrial efficiency and the presence of different nuclear backgrounds. In this manuscript, we have extended the study of such ...
متن کاملGenetic differentiation at nuclear and mitochondrial loci among large white-headed gulls: sex-biased interspecific gene flow?
We measured genetic differentiation among species of large white-headed gulls using mitochondrial (cytochrome b haplotypes) and nuclear (microsatellites) markers. Additional information was added using a previously published study of allozymes on the same species. Levels of differentiation among species at nuclear markers are much lower than would be expected for avian species and are not conco...
متن کاملHigher plant mitochondria
Over the past 20 years, researchers investigating the mitochondria of plants have been astonished by the phenomenal variation these organelles display relative to their mammalian and fungal counterparts. Plant mitochondria have evolved distinct strategies for genome maintenance, genetic decoding, gene regulation, and organelle segregation. Their physiological and biochemical functions have simi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017